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LETTER TO THE EDITOR 

Modulated and commensurate vortex structures in layered 
superconductors 

D I Karasyov and V L Pokrovskyt 
Landau lnslitute for Theoretical Physics, Russian Academy of Science, Kosygin sir. 2, 
Moscow 117934, Russia 

Received 21 January 1992 

Abstract The nietaslable slates of a voRm latlice in a layered superconduclor in the 
presence of a magnetic field parallel IO the layen are shown to form 8trucIure8 lhal are 
modulated or Commensurafe 10 the layen. A number of commensurate s t ~ c l ~ r e s  with 
equivalenl eneeies are lound. The incommensurate structures can rofate abruptly when 
the magnetic lield is varied. The structure faclor and the London free energy ot the 
incommensuralr SIIIICIUI~S are calculated. 

We consider vortex lattices in layered superconductors in magnetic fields parallel to 
the layers. Such structures have been shown to be metastable in a wide range of 
temperatures due to strong periodic pinning [l]. In previous work [l] the vortex 
structures were implicitly assumed to be commensurate with the layers. Moreover, 
only the most symmetric orientation of the vortex lattice with respect to the layers 
was considered. In this work we generalize the theory [l] include incommensurate 
lattices and non-symmeuic orientations of commensurate lattices. 

We assume the following experimental procedure. One should apply the external 
magnetic field parallel to the layers at a temperature higher than T,. Then the 
temperature is decreased until at some T’ < T, the periodic pinning becomes very 
strong. The vortex structure that appears by this procedure is metastable, i.e. the 
vortices cannot change their coordinates perpendicular to the layers. We search for 
a minimum energy of the vortex system under these conditions. 

If the external field is chosen in such a way that the vortex lattice becomes com- 
mensurate, this metastable state coincides with the stable state. Otherwise the vortices 
should be shifted in order to occupy positions defined by the layers. Displacements 
should be minimal to minimize the interaction energy of vortices. 

In this case the London free energy assumes the form: 

and after rescaling ,c - :r&, z - : A a b  we get: 
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The energy is obviously invariant with respect to rotations in the z-z plane. So, 
without layers there exists a continuous set of symmetric hexagonal lattices with the 
same energy. In non-layered uniaxial superconductors an infinitesimal tilt of the 
cxternal magnetic field lifts this degeneracy [Z], and the most symmetrically oriented 
structure with triangle edges parallel to the x-axis, has minimal energy. We call such 
a configuration the symmetric configuration, However, layered superconductors have 
been shown to screen the component of the external field normal to the layers, until 
it reaches some critical value H, [3]. So, it is reasonable to consider strictly parallel 
orientation of the magnetic induction B to the layers and therefore various positions 
of the vortex lattice. 

A periodic lattice can be made commensurate to the layered structure with period 
s if there exist reciprocal lattice vectors with the modulus equal to 27~/s. So, we 
can define ab = ( 0 , 2 7 ~ / s ) .  For commensurability this vector must coincide with 
one of the reciprocal lattice vectors G, say GI. Orientation of this vector in the 
reciprocal lattice gives the orientation of the lattice with respect to the layers. For a 
symmetric hexagonal lattice with n = (2q+,/fiB)*/? the vectors of reciprocal lattice 
are defined by two integers n1 and J L ? :  

and the commensurability condition is 

i i t  - i i 1 i z 2  + ix: = 3 a 2 / 4 s 2  = a'. (4) 

Here B is the space average of the local magnetic field H .  Equation (4) defines 
particular values of the magnetic field 

corresponding to commensurate vortex lattices. One should expect the critical Current 
to have maxima at these values of magnetic field, as was observed in the experiments 
by Martinoli and coworkers 141 with periodically corrugated aluminium films. 

Equation (4) possesses an obvious reflection symmetry: if (n,,n,) is a solution 
then (nl  , n, - n?) is also a solution, These solutions correspond to the orientations 
of G, transformed into one another by a reflection transformation of the reciprocal 
lattice, and give configurations with the basis of triangle rotated by /3 and -@ with 
respect to the x-axis, where sin p = n l s / u .  Other symmetry transformations of 
the reciprocal lattice (and (4)) give rise to vectors G ,  that are turned to the angle 
nn/G with respect to two aforementioned vectors. So, in general (when these two 
vectors do not coincide and there are no independent solutions) there exist two 
ditierent nonsymmetric positions of the lattice. We show the arrangements of the 
reciprocal lattice in figure l (u) .  Sometimes the number of these positions is larger. 
The symmetric configuration appears when a is an integer a = m. Special values of 
i n ,  for which a non-symmetric configuration is possible in addition to the symmetric 
one, are defined by two integers p and q, so that m = p2 + q2 - pq,  ?il = p( 2q  - p) 
and n? = q(2p - q)  and q / 2  < p < 2q. The first non-trivial solution, corresponding 
to p = 2 . q  = 3 , m  = '7, is shown in figure l(b); the next one corresponding to 
p = 3 . q  = 4,m = 13 is shown in figure l(c). If, for example, (4) can be satisfied 
for a = in ,  and a = m2, where in, and m2 are integers then for a = m1m2 it 
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Figure 1. (0) ?he redpmcal lattice of a vonex svucture (points) and diferenl orientation 
of reciprocal latlice vectors of layers (arrows) for = 7. Three inequivalent orientations 
are shown by solid, dashed and point-dashed lines, respectively. (b) ?he elementaly cells 
of three inequivalent StNClUreS for a = 7. According to the notation of (4) they 
correspond to nl = 7, n2 = 0: nl = 8, n2 = 5 and nl = 8. n2 = 3, respectively. 
(c) The same for a = 13 and nl = 13, n2 = 0 ;  nl = 15, n 2  = 7 and nl = 15, 
n2 = 8. 

can also be satisfied, and for this value of a there are at least five different solutions 
including four non-symmetric ones. 

For incommensurate phases we assume that their orientations will be defined 
by the reciprocal lattice vector closest by modulus to lsbl = 2?r/s. This vector is 
a discontinuous function of s at fixed B, therefore, a set of orientational phase 
transitions can be found. To find these transitions one should first increase the 
temperature at k e d  magnetic field until T > T' and then decrease it again. Let 
us consider an incommensurate configuration close to some symmetric commensurate 
configuration. If the vortices are displaced to the nearest interlayer spaces, the f 
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component of the displacement is: 

u a ( z )  = [ $  - { 3/s + +}Is (5) 

where braces denote the fractional part of a number. We believe that there are 
no displacements U parallel to the layers. At least, for a > 1 the expansion to 
second order in U of the painvise vortex interaction shows that such displacements 
are unfavourable. 

The magnetic field H can be found from the generalized London equation: 

Here u(rn,,") is the displacement of the site T ~ , ~  with z component given by (5) 
and zero I component. After the Fourier transformation we find: 

As a result we find: 

Hq(l + q2)  = ( 2 7 r ) * B ~ 6 ( 9 -  G -  nsh)sin %,/(%) 2 (8) 
G." 

Figure 2. A set of parallel lines tilled by reeiprocal vectors or the vortex lattice 
when i t  is incommensurate to the lavers. 

where s, = (0,s). Consider two cases. If nsg does not belong to the reciprocal 
lattice for any integer n then the set of vectors G+ RS,, fills, densely, a set of parallel 
lines in the plane (see figure 2) and the representation of a vector ffl such a form 
is unique. The vortices form a double-periodic lattice. This is a typical modulated 
structure or a quasicrystal. The Fourier components of the field at q = G f n s b  are 

H q  = ~on'sii i(Gs,/2)/(Gs,/2)1/(1 +2) (9) 

where N is the total number of vortices. If nisb belongs to the reciprocal lattice at 
some integer m then Hq is also non-zero for q = G f nsb and 

H q  = &,iV [sin (Gsa/2)/m sin(Gs,/2m)] [ ( c o ~ ( G s , / 4 m ) ) ~  

- (-l)m(sin(Gs,/4m)a]1/(1 -I- q 2 ) .  
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Note that in this case, a of the RHS of (4) is rational and nL is its denominator. 
The vortex structure is commensurate and its period along the z axis is mas. As cy 
converges to an irrational number, ~n - 00 and the period also tends to infinity. The 
structure becomes double-periodic and its Fourier components converge to the RHS 
of (9). At 71% = 1, the RHS of (10) gives the ordinary Fourier components. We can 
unify (9) and (10) by writing: 

Then the London free energy per unit volume becomes: 

The summation in (12) proceeds over all G which are inequivalent by modulus msb.  
The scattering amplitude fq of polarized neutrons in the Born approximation is 

proportional to H,, namely f, = pn(sH, ) ,  where &bo is the neutron magneton and 
s is the neutron polarization vector [SI. 

The function f is continuous at every irrational point and discontinuous at every 
rational point. We can show that the free energy is a continuous function of magnetic 
field. However, we have no definite predictions on the behaviour of the magnetization 
and the magnetic susceptibility. One should keep in mind that at each measurement, 
heating to a temperature T > T‘ and subsequent cooling is assumed. Orhenvise the 
vortices move only along the z-axis and all thermodynamic variables are continuous 
with the exception of special singular points [l]. 

In conclusion, we emphasize that in experimental obselvations the modulated 
structure will exhibit a series of satellites in addition to main reflections of the Ui- 
angular lattice, with orientational phase transitions and with singular behaviour of 
magnetization versus magnetic field. We also expect the appearance of complex com- 
mensurate structures in strong magnetic fields ( B  2 5 T), when the period of the 
regular lattice becomes less than interplaue distance. 

This work was supported under Contract no DE-AC02-76CH00016 with the Division 
of Basic Energy Sciences, USDOE. One of us (VP) is grateful to Per Bak for his 
kind hospitality and help and to B lbperverg for interesting discussions. 
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